LVS 负载均衡集群应用实战

前提:三台虚拟机,有nginx,要做负载

1. LVS-server 安装lvs管理软件

[root@lvs-server ~]# yum -y install ipvsadm

程序包:ipvsadm(LVS管理工具)

主程序:/usr/sbin/ipvsadm

规则保存工具:/usr/sbin/ipvsadm-save  > /path/to/file

配置文件:/etc/sysconfig/ipvsadm-config

2. LVS/DR 模式

DR模式的组网要求LVS和Real server在同一网段二层互通。因为LVS DR模式在负载均衡转发报文时,只修改目的mac为real server的mac,lvs要能将报文转发给real server,就必须满足LVS和real server是同网段二层互通。

2.1 格式是:

2.2 LVS/DR模式实施

准备工作(集群中所有主机)关闭防火墙和selinux

Director分发器配置
配置VIP(网关要在同一段上)
[root@lvs-server ~]# ip addr add dev ens33 192.168.246.160/32 #设置VIP
[root@lvs-server ~]# yum install -y ipvsadm   #RHEL确保LoadBalancer仓库可用
[root@lvs-server ~]# service ipvsadm start  #启动
注意:启动如果报错: /bin/bash: /etc/sysconfig/ipvsadm: 没有那个文件或目录
需要手动生成文件
[root@lvs-server ~]# ipvsadm --save > /etc/sysconfig/ipvsadm

为什么RS上lo配置的VIP掩码为32位
这是由于lo设备的特殊性导致, 如果lo绑定VIP/24,则该设备会响应该网段所有IP(192.168.246.0-254)的请求,而不是只响应192.168.246.160这一个地址。,就算是不设置为32也是可以的,只不过会影响访问
定义LVS分发策略

-A:添加VIP
-t:用的是tcp协议
-a:添加的是lo的vip地址
-r:转发到real-serve rip
-s:算法
-L|-l –list #显示内核虚拟服务器表
–numeric, -n:#以数字形式输出地址和端口号
-g –gatewaying #指定LVS工作模式为直接路由器模式(也是LVS默认的模式)
-S -save #保存虚拟服务器规则到标准输出,输出为-R 选项可读的格式
rr:轮循
如果添加ip错了,删除命令如下:
# ip addr del 192.168.246.193 dev ens33

[root@lvs-server ~]# ipvsadm -C  #清除内核虚拟服务器表中的所有记录。
[root@lvs-server ~]# ipvsadm -A -t 192.168.246.160:80 -s rr 
后端机器192.168.246.161:
[root@lvs-server ~]# ipvsadm -a -t 192.168.246.160:80 -r 192.168.246.161 -g
后端机器192.168.246.162:
[root@lvs-server ~]# ipvsadm -a -t 192.168.246.160:80 -r 192.168.246.162 -g 
[root@lvs-server ~]# service ipvsadm save #保存方式一,使用下面的保存方式,版本7已经不支持了
[root@lvs-server ~]# ipvsadm -S > /etc/sysconfig/ipvsadm  #保存方式二,保存到一个文件中
[root@lvs-server ~]# ipvsadm -ln
IP Virtual Server version 1.2.1 (size=4096)
Prot LocalAddress:Port Scheduler Flags
  -> RemoteAddress:Port           Forward Weight ActiveConn InActConn
TCP  192.168.246.160:80 rr
  -> 192.168.246.161:80           Route   1      0          0         
  -> 192.168.246.162:80           Route   1      0          0         
[root@lvs-server ~]# ipvsadm -L -n
所有RS配置(另外两台都要做)

两个的nginx页面做区分,好看实验效果

配置好网站服务器,测试所有RS	#为了测试效果,提供不同的页面(以下两台real-server都操作)
[root@real-server1 ~]# yum install -y nginx
[root@real-server1 ~]# echo "real-server1" >> /usr/share/nginx/html/index.html
两台机器都安装,按顺序添加不同的主机名以示区分
[root@real-server1 ~]# ip addr add dev lo 192.168.246.160/32   #在lo接口上绑定VIP
[root@real-server1 ~]# echo 1 > /proc/sys/net/ipv4/conf/all/arp_ignore  #忽略arp广播
[root@real-server1 ~]# echo 2 > /proc/sys/net/ipv4/conf/all/arp_announce #匹配精确ip地址回包
[root@real-server1 ~]# systemctl start nginx 
[root@real-server1 ~]# systemctl enable  nginx 
=============================================================================
因为:realServer的vip有了,接着就是同一个网段中拥有两个vip, 客户端在网关发送arp广播需找vip时需要让realServer不接受响应.  
解决:
echo 1 >/proc/sys/net/ipv4/conf/eth0/arp_ignore 
arp_ignore 设置为1,意味着当别人的arp请求过来的时候,如果接收的设备没有这个ip,就不做出响应(这个ip在lo上,lo不是接收设备的进口)
echo 2 >/proc/sys/net/ipv4/conf/eth0/arp_announce   
使用最好的ip来回应,什么是最好的ip?同一个网段内子网掩码最长的
测试

1)用浏览器访问VIP的IP

2)用另外的一个机器curl   IP

3) 用另外的一个机器下载elinks(yum  -y  install  elinks)

elinks -dump http://192.168.246.160    -dump:非交互式模式     结果跟curl类似

elinks  http://192.168.246.160 页面跟浏览器类似

3. LVS的调度算法

LVS的调度算法分为静态与动态两类。

3.1 静态算法(4种)

只根据算法进行调度 而不考虑后端服务器的实际连接情况和负载情况

①.RR:轮叫调度(Round Robin)、轮询

将客户端请求平均分发到每台Real Server

②.WRR:加权轮叫(Weight RR)

 调度器通过“加权轮叫”调度算法根据真实服务器的不同处理能力来调度访问请求。这样可以保证处理能力强的服务器处理更多的访问流量。调度器可以自动问询真实服务器的负载情况,并动态地调整其权值。

③.DH:目标地址散列调度(Destination Hash )

将同样的请求发送给同一个server,一般用于缓存服务器.即将同一类型的请求分配给同一个后端服务器,例如将以 .jgp、.png等结尾的请求转发到同一个节点。这种算法其实不是为了真正意义的负载均衡,而是为了资源的分类管理。这种调度算法主要应用在使用了缓存节点的系统中,提高缓存的命中率。

④.SH:源地址 hash(Source Hash)

 源地址散列”调度算法根据请求的源IP地址,
简单的说就是有将同一客户端的请求发给同一个real server,如果后端服务器工作正常没有超负荷的话。这可以解决session共享的问题,但是这里有个问题,很多企业、社区、学校都是共用的一个IP,这将导致请求分配的不均衡。

3.2 动态算法(6种)

前端的调度器会根据后端真实服务器的实际连接情况来分配请求

①.LC:最少链接(Least Connections)

调度器通过”最少连接”调度算法动态地将网络请求调度到已建立的链接数最少的服务器上。如果集群系统的真实服务器具有相近的系统性能,采用”最小连接”调度算法可以较好地均衡负载。

②.WLC:加权最少连接(默认采用的就是这种)(Weighted Least Connections)

  根据Real Server 权重值,选择连接数最少的服务器。

③.SED:最短期望延迟调度(Shortest Expected Delay )

不考虑非活动连接,谁的权重大,我们优先选择权重大的服务器来接收请求,但会出现问题,就是权重比较大的服务器会很忙,但权重相对较小的服务器很闲,甚至会接收不到请求,所以便有了下面的算法nq。

④.NQ:永不排队/最少队列调度(Never Queue Scheduling NQ)

无需队列。如果有台realserver的连接数=0就直接分配过去,保证不会有一个主机很空间。

⑤.LBLC:基于局部性的最少链接(locality-Based Least Connections)

  基于局部性的最少链接”调度算法是针对目标IP地址的负载均衡,目前主要用于Cache集群系统。该算法根据请求的目标IP地址找出该目标IP地址最近使用的服务器,若该服务器是可用的且没有超载,将请求发送到该服务器;若服务器不存在,或者该服务器超载且有服务器处于一半的工作负载,则用“最少链接”的原则选出一个可用的服务器,将请求发送到该服务器。

⑥. LBLCR:带复制的基于局部性最少连接(Locality-Based Least Connections with Replication)

  带复制的基于局部性最少链接”调度算法也是针对目标IP地址的负载均衡,目前主要用于Cache集群系统。它与LBLC算法的不同之处是它要维护从一个目标IP地址到一组服务器的映射,而LBLC算法维护从一个目标IP地址到一台服务器的映射。该算法根据请求的目标IP地址找出该目标IP地址对应的服务器组,按”最小连接”原则从服务器组中选出一台服务器,若服务器没有超载,将请求发送到该服务器;若服务器超载,则按“最小连接”原则从这个集群中选出一台服务器,将该服务器加入到服务器组中,将请求发送到该服务器。同时,当该服务器组有一段时间没有被修改,将最忙的服务器从服务器组中删除,以降低复制的程度。

© 版权声明
THE END
如果内容对您有所帮助,就支持一下吧!
点赞0 分享
评论 抢沙发

请登录后发表评论

    暂无评论内容