通过 docker-compose 快速部署 Hadoop 集群详细教程

一、概述

docker-compose 项目是docker官方的开源项目, 负责实现对docker容器集群的快速编排,来轻松高效的管理容器,定义运行多个容器。

  • 通过docker-compose来部署应用是超级简单和快捷的。但是由于docker-compose是管理单机的,所以一般通过docker-compose部署的应用用于测试、poc环境以及学习等非生产环境场景。生产环境如果需要使用容器化部署,提议还是使用K8s。
  • Hadoop集群部署还是稍微比较麻烦点的,针对小伙伴能够快速使用Hadoop集群,这里就使用docker-compose来部署Hadoop集群。

关于docker-compose介绍可以参考我以下几篇文章:

  • Docker三剑客之Compose
  • docker-compose 进阶篇

如果需要通过k8s来部署Hadoop环境,可以参考我之前的以下几篇文章:

  • 【云原生】Hadoop on k8s 环境部署
  • 【云原生】Hadoop HA on k8s 环境部署

Hadoop NameNode HA 架构:

通过 docker-compose 快速部署 Hadoop 集群详细教程


Hadoop YARN HA 架构:

通过 docker-compose 快速部署 Hadoop 集群详细教程

二、安装 docker 和 docker-compose

1)安装 docker

# 安装yum-config-manager配置工具
yum -y install yum-utils

# 提议使用阿里云yum源:(推荐)
#yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo
yum-config-manager --add-repo http://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo

# 安装docker-ce版本
yum install -y docker-ce
# 启动并开机启动
systemctl enable --now docker
docker --version

2)安装 docker-compose

官方安装地址教程:https://docs.docker.com/compose/install/other/

curl -SL https://github.com/docker/compose/releases/download/v2.16.0/docker-compose-linux-x86_64 -o /usr/local/bin/docker-compose

chmod +x /usr/local/bin/docker-compose
docker-compose --version

三、docker-compose deploy

在讲Hadoop之前这里先补充几个重大的知识点,实则在k8s里面也讲过,只是这里正对docker-compose再来讲解一次。

1)设置副本数

replicas_test.yaml

version: '3'
services:
  replicas_test:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/centos:7.7.1908
    restart: always
    command: ["sh","-c","sleep 36000"]
    deploy:
      replicas: 2
    healthcheck:
      test: ["CMD-SHELL", "hostname"]
      interval: 10s
      timeout: 5s
      retries: 3

执行

docker-compose -f replicas_test.yaml up -d
docker-compose -f replicas_test.yaml ps

通过 docker-compose 快速部署 Hadoop 集群详细教程


从上图可知,通过配置
deploy.replicas 来控制创建服务容器的数量,但是并非所有场景都适用,下面Hadoop的有些组件是不适用的,像要求设置主机名和容器名的时候,就不太适用通过这个参数来调整容器的数量。

2)资源隔离

docker-compose的资源隔离跟k8s里面的是一样的,所以通过下面示例就很好理解了,示例如下:

resources_test.yaml

version: '3'
services:
  resources_test:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/centos:7.7.1908
    restart: always
    command: ["sh","-c","sleep 36000"]
    deploy:
      replicas: 2
      resources:
        # 容器资源申请的最大值,容器最多能适用这么多资源
        limits:
          cpus: '1'
          memory: 100M
        # 所需资源的最小值,跟k8s里的requests一样,就是运行容器的最小值
        reservations:
          cpus: '0.5'
          memory: 50M
    healthcheck:
      test: ["CMD-SHELL", "hostname"]
      interval: 10s
      timeout: 5s
      retries: 3

执行

docker-compose -f resources_test.yaml up -d
docker-compose -f resources_test.yaml ps
# 查看状态
docker stats deploy-test-resources_test-1

通过 docker-compose 快速部署 Hadoop 集群详细教程

四、docker-compose network

network 在容器中是超级重大的一个知识点,所以这里重点以示例讲解的方式来看看不同docker-compose项目之间如果通过名称访问,默认清楚下,每个docker-compose就是一个项目(不同目录,一样目录的多个compose属于一个项目),每个项目就会默认生成一个网络。注意,默认情况下只能在同一个网络中使用名称相互访问。那不同项目中如何通过名称访问呢,接下来就一示例讲解。

test1/test1.yaml

version: '3'
services:
  test1:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/centos:7.7.1908
    container_name: c_test1
    hostname: h_test1
    restart: always
    command: ["sh","-c","sleep 36000"]
    healthcheck:
      test: ["CMD-SHELL", "hostname"]
      interval: 10s
      timeout: 5s
      retries: 3

test2/test2.yaml

version: '3'
services:
  test2:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/centos:7.7.1908
    container_name: c_test2
    hostname: h_test2
    restart: always
    command: ["sh","-c","sleep 36000"]
    healthcheck:
      test: ["CMD-SHELL", "hostname"]
      interval: 10s
      timeout: 5s
      retries: 3

执行验证结果如下:

docker-compose -f test1/test1.yaml up -d
docker-compose -f test2/test2.yaml up -d
# 查看network,会生成两个network,如果两个yaml文件在同一个目录下,只会生成一个,它们也就属于同一个network下,是可以通过名称相互访问的。这里是在不同的目录下,就会生成两个network,默认情况下,不同的network是隔离的,不能通过名称访问的。yaml文件所在的目录名就是项目名称。这个项目名称是可以通过参数指定的,下面会细讲。
docker network ls

# 互ping
docker exec -it c_test1 ping c_test2
docker exec -it c_test1 ping h_test2

docker exec -it c_test2 ping c_test1
docker exec -it c_test2 ping h_test1

# 卸载
docker-compose -f test1/test1.yaml down
docker-compose -f test2/test2.yaml down

通过 docker-compose 快速部署 Hadoop 集群详细教程


接下来我们加上network再进行测试验证

  • test1/network_test1.yaml

test1/network_test1.yaml 定义创建新network,在下面test2/network_test2.yaml引用test1创建的网络,那么这两个项目就在同一个网络中了,注意先后执行顺序。

version: '3'
services:
  network_test1:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/centos:7.7.1908
    container_name: c_network_test1
    hostname: h_network_test1
    restart: always
    command: ["sh","-c","sleep 36000"]
    # 使用network
    networks:
      - test1_network
    healthcheck:
      test: ["CMD-SHELL", "hostname"]
      interval: 10s
      timeout: 5s
      retries: 3

# 定义创建新网络
networks:
  test1_network:
    driver: bridge
  • test2/network_test2.yaml
version: '3'
services:
  network_test2:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/centos:7.7.1908
    container_name: c_network_test2
    hostname: h_network_test2
    restart: always
    networks:
      - test1_network
    command: ["sh","-c","sleep 36000"]
    healthcheck:
      test: ["CMD-SHELL", "hostname"]
      interval: 10s
      timeout: 5s
      retries: 3

# 引用test1的网络
networks:
  # 项目名_网络名,可以通过docker network ls查看network名称
  test1_test1_network:
    external: true

执行验证结果如下:

docker-compose -f test1/network_test1.yaml up -d
docker-compose -f test2/network_test2.yaml up -d

# 查看网络
docker network ls

# 互ping
docker exec -it c_network_test1 ping -c3 c_network_test2 
docker exec -it c_network_test1 ping -c3 h_network_test2
docker exec -it c_network_test2 ping -c3 c_network_test1
docker exec -it c_network_test2 ping -c3 h_network_test1

# 卸载,注意顺序,要先卸载应用方,要不然network被应用了是删除不了的
docker-compose -f test2/network_test2.yaml down
docker-compose -f test1/network_test1.yaml down

通过 docker-compose 快速部署 Hadoop 集群详细教程


从上实验可知,只有多个项目在同一个网络里才可以通过主机名或着容器名访问的。

五、docker-compose 项目

默认的项目名称就是当前yaml文件所在的目录名称,上面讲解network的时候生成的网络名称也会最前面的项目名称,但是项目名称是可以自定义的,示例讲解如下:

# test.yaml
version: '3'
services:
  test:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/centos:7.7.1908
    restart: always
    command: ["sh","-c","sleep 36000"]
    healthcheck:
      test: ["CMD-SHELL", "hostname"]
      interval: 10s
      timeout: 5s
      retries: 3

执行

# 先不加参数
docker-compose -f test.yaml up -d
# 查看网络
network ls

# 使用参数自定义项目名称,-p, --project-name,有四种写法
docker-compose -p=p001 -f test.yaml up -d
docker-compose -p p002 -f test.yaml up -d
docker-compose --project-name=p003 -f test.yaml up -d
docker-compose --project-name p004 -f test.yaml up -d
# 查看网络
docker network ls

# 查看所有项目
docker-compose ls

通过 docker-compose 快速部署 Hadoop 集群详细教程

六、Hadoop 部署(非高可用)

1)安装 JDK

# jdk包在我下面提供的资源包里,当然你也可以去官网下载。
tar -xf jdk-8u212-linux-x64.tar.gz

# /etc/profile文件中追加如下内容:
echo "export JAVA_HOME=`pwd`/jdk1.8.0_212" >> /etc/profile
echo "export PATH=$JAVA_HOME/bin:$PATH" >> /etc/profile
echo "export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar" >> /etc/profile

# 加载生效
source /etc/profile

2)下载 hadoop 相关的软件

### 1、Hadoop
# 下载地址:https://dlcdn.apache.org/hadoop/common/
wget https://dlcdn.apache.org/hadoop/common/hadoop-3.3.5/hadoop-3.3.5.tar.gz --no-check-certificate

### 2、hive
# 下载地址:http://archive.apache.org/dist/hive
wget http://archive.apache.org/dist/hive/hive-3.1.3/apache-hive-3.1.3-bin.tar.gz

### 2、spark
# Spark下载地址:http://spark.apache.org/downloads.html
wget https://dlcdn.apache.org/spark/spark-3.3.2/spark-3.3.2-bin-hadoop3.tgz --no-check-certificate

### 3、flink
wget https://dlcdn.apache.org/flink/flink-1.17.0/flink-1.17.0-bin-scala_2.12.tgz --no-check-certificate

3)构建镜像 Dockerfile

FROM registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/centos:7.7.1908

RUN rm -f /etc/localtime && ln -sv /usr/share/zoneinfo/Asia/Shanghai /etc/localtime && echo "Asia/Shanghai" > /etc/timezone

RUN export LANG=zh_CN.UTF-8

# 创建用户和用户组,跟yaml编排里的user: 10000:10000
RUN groupadd --system --gid=10000 hadoop && useradd --system --home-dir /home/hadoop --uid=10000 --gid=hadoop hadoop

# 安装sudo
RUN yum -y install sudo ; chmod 640 /etc/sudoers

# 给hadoop添加sudo权限
RUN echo "hadoop ALL=(ALL) NOPASSWD: ALL" >> /etc/sudoers

RUN yum -y install install net-tools telnet wget nc

RUN mkdir /opt/apache/

# 安装 JDK
ADD jdk-8u212-linux-x64.tar.gz /opt/apache/
ENV JAVA_HOME /opt/apache/jdk1.8.0_212
ENV PATH $JAVA_HOME/bin:$PATH

# 配置 Hadoop
ENV HADOOP_VERSION 3.3.5
ADD hadoop-${HADOOP_VERSION}.tar.gz /opt/apache/
ENV HADOOP_HOME /opt/apache/hadoop
RUN ln -s /opt/apache/hadoop-${HADOOP_VERSION} $HADOOP_HOME

ENV HADOOP_COMMON_HOME=${HADOOP_HOME} 
    HADOOP_HDFS_HOME=${HADOOP_HOME} 
    HADOOP_MAPRED_HOME=${HADOOP_HOME} 
    HADOOP_YARN_HOME=${HADOOP_HOME} 
    HADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop 
    PATH=${PATH}:${HADOOP_HOME}/bin

# 配置Hive
ENV HIVE_VERSION 3.1.3
ADD apache-hive-${HIVE_VERSION}-bin.tar.gz /opt/apache/
ENV HIVE_HOME=/opt/apache/hive
ENV PATH=$HIVE_HOME/bin:$PATH
RUN ln -s /opt/apache/apache-hive-${HIVE_VERSION}-bin ${HIVE_HOME}

# 配置spark
ENV SPARK_VERSION 3.3.2
ADD spark-${SPARK_VERSION}-bin-hadoop3.tgz /opt/apache/
ENV SPARK_HOME=/opt/apache/spark
ENV PATH=$SPARK_HOME/bin:$PATH
RUN ln -s /opt/apache/spark-${SPARK_VERSION}-bin-hadoop3 ${SPARK_HOME}

# 配置 flink
ENV FLINK_VERSION 1.17.0
ADD flink-${FLINK_VERSION}-bin-scala_2.12.tgz /opt/apache/
ENV FLINK_HOME=/opt/apache/flink
ENV PATH=$FLINK_HOME/bin:$PATH
RUN ln -s /opt/apache/flink-${FLINK_VERSION} ${FLINK_HOME}

# 创建namenode、datanode存储目录
RUN mkdir -p /opt/apache/hadoop/data/{hdfs,yarn} /opt/apache/hadoop/data/hdfs/namenode /opt/apache/hadoop/data/hdfs/datanode/data{1..3} /opt/apache/hadoop/data/yarn/{local-dirs,log-dirs,apps}

COPY bootstrap.sh /opt/apache/

COPY config/hadoop-config/* ${HADOOP_HOME}/etc/hadoop/

RUN chown -R hadoop:hadoop /opt/apache

ENV ll "ls -l"

WORKDIR /opt/apache

开始构建镜像

docker build -t hadoop:v1 . --no-cache

# 为了方便小伙伴下载即可使用,我这里将镜像文件推送到阿里云的镜像仓库
docker tag hadoop:v1 registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop:v1
docker push registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop:v1

### 参数解释
# -t:指定镜像名称
# . :当前目录Dockerfile
# -f:指定Dockerfile路径
#  --no-cache:不缓存

4)配置

配置文件会统一放在最下面提供的资源包里的。

1、Hadoop 配置

主要有以下几个文件:core-site.xmldfs.hostsdfs.hosts.excludehdfs-site.xmlmapred-site.xmlyarn-hosts-excludeyarn-hosts-includeyarn-site.xml

2、Hive 配置

主要有以下几个文件:hive-env.shhive-site.xml,这篇文章不会讲hive部分,会放到下篇文章讲解。

5)启动脚本 bootstrap.sh

# bootstrap.sh
#!/usr/bin/env sh

wait_for() {
    echo Waiting for $1 to listen on $2...
    while ! nc -z $1 $2; do echo waiting...; sleep 1s; done
}

start_hdfs_namenode() {

        if [ ! -f /tmp/namenode-formated ];then
                ${HADOOP_HOME}/bin/hdfs namenode -format >/tmp/namenode-formated
        fi

        ${HADOOP_HOME}/bin/hdfs --loglevel INFO --daemon start namenode

        tail -f ${HADOOP_HOME}/logs/*namenode*.log
}

start_hdfs_datanode() {

        wait_for $1 $2

        ${HADOOP_HOME}/bin/hdfs --loglevel INFO --daemon start datanode

        tail -f ${HADOOP_HOME}/logs/*datanode*.log
}

start_yarn_resourcemanager() {

        ${HADOOP_HOME}/bin/yarn --loglevel INFO --daemon start resourcemanager

        tail -f ${HADOOP_HOME}/logs/*resourcemanager*.log
}

start_yarn_nodemanager() {

        wait_for $1 $2

        ${HADOOP_HOME}/bin/yarn --loglevel INFO --daemon start nodemanager

        tail -f ${HADOOP_HOME}/logs/*nodemanager*.log
}

start_yarn_proxyserver() {

        wait_for $1 $2

        ${HADOOP_HOME}/bin/yarn --loglevel INFO --daemon start proxyserver

        tail -f ${HADOOP_HOME}/logs/*proxyserver*.log
}

start_mr_historyserver() {

        wait_for $1 $2

        ${HADOOP_HOME}/bin/mapred --loglevel INFO  --daemon  start historyserver

        tail -f ${HADOOP_HOME}/logs/*historyserver*.log
}

case $1 in
        hadoop-hdfs-nn)
                start_hdfs_namenode
                ;;
        hadoop-hdfs-dn)
                start_hdfs_datanode $2 $3
                ;;
        hadoop-yarn-rm)
                start_yarn_resourcemanager
                ;;
        hadoop-yarn-nm)
                start_yarn_nodemanager $2 $3
                ;;
        hadoop-yarn-proxyserver)
                start_yarn_proxyserver $2 $3
                ;;
        hadoop-mr-historyserver)
                start_mr_historyserver $2 $3
                ;;
        *)
                echo "请输入正确的服务启动命令~"
        ;;
esac

6)YAML 编排 docker-compose.yaml

version: '3'
services:
  hadoop-hdfs-nn:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop:v1
    user: "hadoop:hadoop"
    container_name: hadoop-hdfs-nn
    hostname: hadoop-hdfs-nn
    restart: always
    env_file:
      - .env
    ports:
      - "30070:${HADOOP_HDFS_NN_PORT}"
    command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-hdfs-nn"]
    networks:
      - hadoop_network
    healthcheck:
      test: ["CMD-SHELL", "curl --fail http://localhost:${HADOOP_HDFS_NN_PORT} || exit 1"]
      interval: 10s
      timeout: 5s
      retries: 3
  hadoop-hdfs-dn-0:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop:v1
    user: "hadoop:hadoop"
    container_name: hadoop-hdfs-dn-0
    hostname: hadoop-hdfs-dn-0
    restart: always
    depends_on:
      - hadoop-hdfs-nn
    env_file:
      - .env
    ports:
      - "30864:${HADOOP_HDFS_DN_PORT}"
    command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-hdfs-dn hadoop-hdfs-nn ${HADOOP_HDFS_NN_PORT}"]
    networks:
      - hadoop_network
    healthcheck:
      test: ["CMD-SHELL", "curl --fail http://localhost:${HADOOP_HDFS_DN_PORT} || exit 1"]
      interval: 10s
      timeout: 5s
      retries: 3
  hadoop-hdfs-dn-1:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop:v1
    user: "hadoop:hadoop"
    container_name: hadoop-hdfs-dn-1
    hostname: hadoop-hdfs-dn-1
    restart: always
    depends_on:
      - hadoop-hdfs-nn
    env_file:
      - .env
    ports:
      - "30865:${HADOOP_HDFS_DN_PORT}"
    command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-hdfs-dn hadoop-hdfs-nn ${HADOOP_HDFS_NN_PORT}"]
    networks:
      - hadoop_network
    healthcheck:
      test: ["CMD-SHELL", "curl --fail http://localhost:${HADOOP_HDFS_DN_PORT} || exit 1"]
      interval: 10s
      timeout: 5s
      retries: 3
  hadoop-hdfs-dn-2:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop:v1
    user: "hadoop:hadoop"
    container_name: hadoop-hdfs-dn-2
    hostname: hadoop-hdfs-dn-2
    restart: always
    depends_on:
      - hadoop-hdfs-nn
    env_file:
      - .env
    ports:
      - "30866:${HADOOP_HDFS_DN_PORT}"
    command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-hdfs-dn hadoop-hdfs-nn ${HADOOP_HDFS_NN_PORT}"]
    networks:
      - hadoop_network
    healthcheck:
      test: ["CMD-SHELL", "curl --fail http://localhost:${HADOOP_HDFS_DN_PORT} || exit 1"]
      interval: 10s
      timeout: 5s
      retries: 3
  hadoop-yarn-rm:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop:v1
    user: "hadoop:hadoop"
    container_name: hadoop-yarn-rm
    hostname: hadoop-yarn-rm
    restart: always
    env_file:
      - .env
    ports:
      - "30888:${HADOOP_YARN_RM_PORT}"
    command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-yarn-rm"]
    networks:
      - hadoop_network
    healthcheck:
      test: ["CMD-SHELL", "netstat -tnlp|grep :${HADOOP_YARN_RM_PORT} || exit 1"]
      interval: 10s
      timeout: 5s
      retries: 3
  hadoop-yarn-nm-0:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop:v1
    user: "hadoop:hadoop"
    container_name: hadoop-yarn-nm-0
    hostname: hadoop-yarn-nm-0
    restart: always
    depends_on:
      - hadoop-yarn-rm
    env_file:
      - .env
    ports:
      - "30042:${HADOOP_YARN_NM_PORT}"
    command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-yarn-nm hadoop-yarn-rm ${HADOOP_YARN_RM_PORT}"]
    networks:
      - hadoop_network
    healthcheck:
      test: ["CMD-SHELL", "curl --fail http://localhost:${HADOOP_YARN_NM_PORT} || exit 1"]
      interval: 10s
      timeout: 5s
      retries: 3
  hadoop-yarn-nm-1:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop:v1
    user: "hadoop:hadoop"
    container_name: hadoop-yarn-nm-1
    hostname: hadoop-yarn-nm-1
    restart: always
    depends_on:
      - hadoop-yarn-rm
    env_file:
      - .env
    ports:
      - "30043:${HADOOP_YARN_NM_PORT}"
    command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-yarn-nm hadoop-yarn-rm ${HADOOP_YARN_RM_PORT}"]
    networks:
      - hadoop_network
    healthcheck:
      test: ["CMD-SHELL", "curl --fail http://localhost:${HADOOP_YARN_NM_PORT} || exit 1"]
      interval: 10s
      timeout: 5s
      retries: 3
  hadoop-yarn-nm-2:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop:v1
    user: "hadoop:hadoop"
    container_name: hadoop-yarn-nm-2
    hostname: hadoop-yarn-nm-2
    restart: always
    depends_on:
      - hadoop-yarn-rm
    env_file:
      - .env
    ports:
      - "30044:${HADOOP_YARN_NM_PORT}"
    command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-yarn-nm hadoop-yarn-rm ${HADOOP_YARN_RM_PORT}"]
    networks:
      - hadoop_network
    healthcheck:
      test: ["CMD-SHELL", "curl --fail http://localhost:${HADOOP_YARN_NM_PORT} || exit 1"]
      interval: 10s
      timeout: 5s
      retries: 3
  hadoop-yarn-proxyserver:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop:v1
    user: "hadoop:hadoop"
    container_name: hadoop-yarn-proxyserver
    hostname: hadoop-yarn-proxyserver
    restart: always
    depends_on:
      - hadoop-yarn-rm
    env_file:
      - .env
    ports:
      - "30911:${HADOOP_YARN_PROXYSERVER_PORT}"
    command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-yarn-proxyserver hadoop-yarn-rm ${HADOOP_YARN_RM_PORT}"]
    networks:
      - hadoop_network
    healthcheck:
      test: ["CMD-SHELL", "netstat -tnlp|grep :${HADOOP_YARN_PROXYSERVER_PORT} || exit 1"]
      interval: 10s
      timeout: 5s
      retries: 3
  hadoop-mr-historyserver:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop:v1
    user: "hadoop:hadoop"
    container_name: hadoop-mr-historyserver
    hostname: hadoop-mr-historyserver
    restart: always
    depends_on:
      - hadoop-yarn-rm
    env_file:
      - .env
    ports:
      - "31988:${HADOOP_MR_HISTORYSERVER_PORT}"
    command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-mr-historyserver hadoop-yarn-rm ${HADOOP_YARN_RM_PORT}"]
    networks:
      - hadoop_network
    healthcheck:
      test: ["CMD-SHELL", "netstat -tnlp|grep :${HADOOP_MR_HISTORYSERVER_PORT} || exit 1"]
      interval: 10s
      timeout: 5s
      retries: 3

networks:
  hadoop_network:
    driver: bridge

.env 文件内容如下:

HADOOP_HDFS_NN_PORT=9870
HADOOP_HDFS_DN_PORT=9864
HADOOP_YARN_RM_PORT=8088
HADOOP_YARN_NM_PORT=8042
HADOOP_YARN_PROXYSERVER_PORT=9111
HADOOP_MR_HISTORYSERVER_PORT=19888

【温馨提示】

  • 如果是不同的compose文件生成的容器,如果不指定一样的network,它们直接是不能通过主机名访问的。
  • depends_on 只能决定容器的启动先后顺序,无法决定容器里服务的启动顺序,作用不大,所以在上面 bootstrap.sh 脚本里加上一个 wait_for 函数来真正控制服务的启动顺序。

7)启动服务

# 这里-f docker-compose.yaml可以省略,如果文件名不是docker-compose.yaml就不能省略,-d 后台执行
docker-compose -f docker-compose.yaml up -d

# 查看状态
docker-compose -f docker-compose.yaml ps

通过 docker-compose 快速部署 Hadoop 集群详细教程

8)测试验证

HDFS:http://ip:30070/

通过 docker-compose 快速部署 Hadoop 集群详细教程

通过 docker-compose 快速部署 Hadoop 集群详细教程

YARN:http://ip:30070/

通过 docker-compose 快速部署 Hadoop 集群详细教程

通过 docker-compose 快速部署 Hadoop 集群详细教程


docker-compose部署非高可用的Hadoop的详细部署就先到这里了,下面继续把高可用的环境部署。

七、Hadoop HA 部署(高可用)

1)安装 JDK

# jdk包在我下面提供的资源包里,当然你也可以去官网下载。
tar -xf jdk-8u212-linux-x64.tar.gz

# /etc/profile文件中追加如下内容:
echo "export JAVA_HOME=`pwd`/jdk1.8.0_212" >> /etc/profile
echo "export PATH=$JAVA_HOME/bin:$PATH" >> /etc/profile
echo "export CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar" >> /etc/profile

# 加载生效
source /etc/profile

2)下载 hadoop 相关的软件

### 1、zookeeper
# 下载地址:https://zookeeper.apache.org/releases.html
# zookeeper非高可用用不到
wget https://dlcdn.apache.org/zookeeper/zookeeper-3.8.0/apache-zookeeper-3.8.0-bin.tar.gz --no-check-certificate
tar -xf  apache-zookeeper-3.8.0-bin.tar.gz

### 2、Hadoop
# 下载地址:https://dlcdn.apache.org/hadoop/common/
wget https://dlcdn.apache.org/hadoop/common/hadoop-3.3.5/hadoop-3.3.5.tar.gz --no-check-certificate

### 3、spark
# Spark下载地址:http://spark.apache.org/downloads.html
wget https://dlcdn.apache.org/spark/spark-3.3.2/spark-3.3.2-bin-hadoop3.tgz --no-check-certificate

### 4、flink
wget https://dlcdn.apache.org/flink/flink-1.17.0/flink-1.17.0-bin-scala_2.12.tgz --no-check-certificate

3)构建镜像 Dockerfile

FROM registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/centos:7.7.1908

RUN rm -f /etc/localtime && ln -sv /usr/share/zoneinfo/Asia/Shanghai /etc/localtime && echo "Asia/Shanghai" > /etc/timezone

RUN export LANG=zh_CN.UTF-8

# 创建用户和用户组,跟yaml编排里的user: 10000:10000
RUN groupadd --system --gid=10000 hadoop && useradd --system --home-dir /home/hadoop --uid=10000 --gid=hadoop hadoop

# 安装sudo
RUN yum -y install sudo ; chmod 640 /etc/sudoers

# 给hadoop添加sudo权限
RUN echo "hadoop ALL=(ALL) NOPASSWD: ALL" >> /etc/sudoers

RUN yum -y install install net-tools telnet wget

RUN mkdir /opt/apache/

# 安装 JDK
ADD jdk-8u212-linux-x64.tar.gz /opt/apache/
ENV JAVA_HOME /opt/apache/jdk1.8.0_212
ENV PATH $JAVA_HOME/bin:$PATH

# 配置zookeeper
ENV ZOOKEEPER_VERSION 3.8.0
ADD apache-zookeeper-${ZOOKEEPER_VERSION}-bin.tar.gz /opt/apache/
ENV ZOOKEEPER_HOME /opt/apache/zookeeper
RUN ln -s /opt/apache/apache-zookeeper-${ZOOKEEPER_VERSION}-bin $ZOOKEEPER_HOME
COPY config/zookeeper-config/* ${ZOOKEEPER_HOME}/conf/

# 配置 Hadoop
ENV HADOOP_VERSION 3.3.5
ADD hadoop-${HADOOP_VERSION}.tar.gz /opt/apache/
ENV HADOOP_HOME /opt/apache/hadoop
RUN ln -s /opt/apache/hadoop-${HADOOP_VERSION} $HADOOP_HOME

ENV HADOOP_COMMON_HOME=${HADOOP_HOME} 
    HADOOP_HDFS_HOME=${HADOOP_HOME} 
    HADOOP_MAPRED_HOME=${HADOOP_HOME} 
    HADOOP_YARN_HOME=${HADOOP_HOME} 
    HADOOP_CONF_DIR=${HADOOP_HOME}/etc/hadoop 
    PATH=${PATH}:${HADOOP_HOME}/bin

# 配置Hive
ENV HIVE_VERSION 3.1.3
ADD apache-hive-${HIVE_VERSION}-bin.tar.gz /opt/apache/
ENV HIVE_HOME=/opt/apache/hive
ENV PATH=$HIVE_HOME/bin:$PATH
RUN ln -s /opt/apache/apache-hive-${HIVE_VERSION}-bin ${HIVE_HOME}

# 配置spark
ENV SPARK_VERSION 3.3.2
ADD spark-${SPARK_VERSION}-bin-hadoop3.tgz /opt/apache/
ENV SPARK_HOME=/opt/apache/spark
ENV PATH=$SPARK_HOME/bin:$PATH
RUN ln -s /opt/apache/spark-${SPARK_VERSION}-bin-hadoop3 ${SPARK_HOME}

# 配置 flink
ENV FLINK_VERSION 1.17.0
ADD flink-${FLINK_VERSION}-bin-scala_2.12.tgz /opt/apache/
ENV FLINK_HOME=/opt/apache/flink
ENV PATH=$FLINK_HOME/bin:$PATH
RUN ln -s /opt/apache/flink-${FLINK_VERSION} ${FLINK_HOME}

# 创建namenode、datanode存储目录
RUN mkdir -p /opt/apache/hadoop/data/{hdfs,yarn} /opt/apache/hadoop/data/hdfs/{journalnode,namenode} /opt/apache/hadoop/data/hdfs/datanode/data{1..3} /opt/apache/hadoop/data/yarn/{local-dirs,log-dirs,apps}

COPY bootstrap.sh /opt/apache/

COPY config/hadoop-config/* ${HADOOP_HOME}/etc/hadoop/

RUN chown -R hadoop:hadoop /opt/apache

ENV ll "ls -l"

WORKDIR /opt/apache

开始构建镜像

docker build -t hadoop-ha:v1 . --no-cache

# 为了方便小伙伴下载即可使用,我这里将镜像文件推送到阿里云的镜像仓库
docker tag hadoop:v1 registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop-ha:v1
docker push registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop-ha:v1

### 参数解释
# -t:指定镜像名称
# . :当前目录Dockerfile
# -f:指定Dockerfile路径
#  --no-cache:不缓存

4)配置

配置文件会统一放在最下面提供的资源包里的。

1、Hadoop 配置

主要有以下几个文件:core-site.xmldfs.hostsdfs.hosts.excludehdfs-site.xmlmapred-site.xmlyarn-hosts-excludeyarn-hosts-includeyarn-site.xml

2、Hive 配置

主要有以下几个文件:hive-env.shhive-site.xml,这篇文章不会讲hive部分,会放到下篇文章讲解。

5)启动脚本 bootstrap.sh

#!/usr/bin/env sh

wait_for() {
    echo Waiting for $1 to listen on $2...
    while ! nc -z $1 $2; do echo waiting...; sleep 1s; done
}

start_zookeeper() {

        ${ZOOKEEPER_HOME}/bin/zkServer.sh start

        tail -f ${ZOOKEEPER_HOME}/logs/zookeeper-*.out
}

start_hdfs_journalnode() {

        wait_for $1 $2

        ${HADOOP_HOME}/bin/hdfs --loglevel INFO --daemon start journalnode

        tail -f ${HADOOP_HOME}/logs/*journalnode*.log

}

start_hdfs_namenode() {

        wait_for $1 $2

        if [ ! -f /opt/apache/hadoop/data/hdfs/namenode/formated ];then
                ${ZOOKEEPER_HOME}/bin/zkCli.sh -server zookeeper:${ZOOKEEPER_PORT} ls /hadoop-ha 1>/dev/null
                if [ $? -ne 0 ];then
                        $HADOOP_HOME/bin/hdfs zkfc -formatZK
                        $HADOOP_HOME/bin/hdfs namenode -format -force -nonInteractive && echo 1 > /opt/apache/hadoop/data/hdfs/namenode/formated
                else
                        $HADOOP_HOME/bin/hdfs namenode -bootstrapStandby && echo 1 > /opt/apache/hadoop/data/hdfs/namenode/formated
                fi
        fi

        $HADOOP_HOME/bin/hdfs --loglevel INFO --daemon start zkfc
        $HADOOP_HOME/bin/hdfs --loglevel INFO --daemon start namenode

        tail -f ${HADOOP_HOME}/logs/*.out
}

start_hdfs_datanode() {

        wait_for $1 $2

        ${HADOOP_HOME}/bin/hdfs --loglevel INFO --daemon start datanode

        tail -f ${HADOOP_HOME}/logs/*datanode*.log
}

start_yarn_resourcemanager() {

        wait_for $1 $2

        ${HADOOP_HOME}/bin/yarn --loglevel INFO --daemon start resourcemanager

        tail -f ${HADOOP_HOME}/logs/*resourcemanager*.log
}

start_yarn_nodemanager() {

        wait_for $1 $2

        ${HADOOP_HOME}/bin/yarn --loglevel INFO --daemon start nodemanager

        tail -f ${HADOOP_HOME}/logs/*nodemanager*.log
}

start_yarn_proxyserver() {

        wait_for $1 $2

        ${HADOOP_HOME}/bin/yarn --loglevel INFO --daemon start proxyserver

        tail -f ${HADOOP_HOME}/logs/*proxyserver*.log
}

start_mr_historyserver() {

        wait_for $1 $2

        ${HADOOP_HOME}/bin/mapred --loglevel INFO  --daemon  start historyserver

        tail -f ${HADOOP_HOME}/logs/*historyserver*.log
}

case $1 in
        zookeeper)
                start_zookeeper
                ;;
        hadoop-hdfs-jn)
                start_hdfs_journalnode $2 $3
                ;;
        hadoop-hdfs-nn)
                start_hdfs_namenode $2 $3
                ;;
        hadoop-hdfs-dn)
                start_hdfs_datanode $2 $3
                ;;
        hadoop-yarn-rm)
                start_yarn_resourcemanager $2 $3
                ;;
        hadoop-yarn-nm)
                start_yarn_nodemanager $2 $3
                ;;
        hadoop-yarn-proxyserver)
                start_yarn_proxyserver $2 $3
                ;;
        hadoop-mr-historyserver)
                start_mr_historyserver $2 $3
                ;;
        *)
                echo "请输入正确的服务启动命令~"
        ;;
esac

6)YAML 编排 docker-compose.yaml

version: '3'
services:
  zookeeper:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop-ha:v1
    user: "hadoop:hadoop"
    container_name: zookeeper
    hostname: zookeeper
    restart: always
    env_file:
      - .env
    ports:
      - ${ZOOKEEPER_PORT}
    command: ["sh","-c","/opt/apache/bootstrap.sh zookeeper"]
    networks:
      - hadoopha_network
    healthcheck:
      test: ["CMD-SHELL", "netstat -tnlp|grep :${ZOOKEEPER_PORT} || exit 1"]
      interval: 10s
      timeout: 5s
      retries: 3
  hadoop-hdfs-jn-0:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop-ha:v1
    user: "hadoop:hadoop"
    container_name: hadoop-hdfs-jn-0
    hostname: hadoop-hdfs-jn-0
    restart: always
    depends_on:
      - zookeeper
    env_file:
      - .env
    expose:
      - ${HADOOP_HDFS_JN_PORT}
    command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-hdfs-jn zookeeper ${ZOOKEEPER_PORT}"]
    networks:
      - hadoopha_network
    healthcheck:
      test: ["CMD-SHELL", "netstat -tnlp|grep :${HADOOP_HDFS_JN_PORT} || exit 1"]
      interval: 10s
      timeout: 5s
      retries: 3
  hadoop-hdfs-jn-1:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop-ha:v1
    user: "hadoop:hadoop"
    container_name: hadoop-hdfs-jn-1
    hostname: hadoop-hdfs-jn-1
    restart: always
    depends_on:
      - hadoop-hdfs-jn-0
    env_file:
      - .env
    expose:
      - ${HADOOP_HDFS_JN_PORT}
    command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-hdfs-jn zookeeper ${ZOOKEEPER_PORT}"]
    networks:
      - hadoopha_network
    healthcheck:
      test: ["CMD-SHELL", "netstat -tnlp|grep :${HADOOP_HDFS_JN_PORT} || exit 1"]
      interval: 10s
      timeout: 5s
      retries: 3
  hadoop-hdfs-jn-2:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop-ha:v1
    user: "hadoop:hadoop"
    container_name: hadoop-hdfs-jn-2
    hostname: hadoop-hdfs-jn-2
    restart: always
    depends_on:
      - hadoop-hdfs-jn-1
    env_file:
      - .env
    expose:
      - ${HADOOP_HDFS_JN_PORT}
    command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-hdfs-jn zookeeper ${ZOOKEEPER_PORT}"]
    networks:
      - hadoopha_network
    healthcheck:
      test: ["CMD-SHELL", "netstat -tnlp|grep :${HADOOP_HDFS_JN_PORT} || exit 1"]
      interval: 10s
      timeout: 5s
      retries: 3
  hadoop-hdfs-nn-0:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop-ha:v1
    user: "hadoop:hadoop"
    container_name: hadoop-hdfs-nn-0
    hostname: hadoop-hdfs-nn-0
    restart: always
    depends_on:
      - hadoop-hdfs-jn-2
    env_file:
      - .env
    ports:
      - "30070:${HADOOP_HDFS_NN_PORT}"
    command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-hdfs-nn hadoop-hdfs-jn-2 ${HADOOP_HDFS_JN_PORT}"]
    networks:
      - hadoopha_network
    healthcheck:
      test: ["CMD-SHELL", "netstat -tnlp|grep :${HADOOP_HDFS_NN_PORT} || exit 1"]
      interval: 10s
      timeout: 5s
      retries: 3
  hadoop-hdfs-nn-1:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop-ha:v1
    user: "hadoop:hadoop"
    container_name: hadoop-hdfs-nn-1
    hostname: hadoop-hdfs-nn-1
    restart: always
    depends_on:
      - hadoop-hdfs-nn-0
    env_file:
      - .env
    ports:
      - "30071:${HADOOP_HDFS_NN_PORT}"
    command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-hdfs-nn hadoop-hdfs-nn-0 ${HADOOP_HDFS_NN_PORT}"]
    networks:
      - hadoopha_network
    healthcheck:
      test: ["CMD-SHELL", "netstat -tnlp|grep :${HADOOP_HDFS_NN_PORT} || exit 1"]
      interval: 10s
      timeout: 5s
      retries: 6
  hadoop-hdfs-dn-0:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop-ha:v1
    user: "hadoop:hadoop"
    container_name: hadoop-hdfs-dn-0
    hostname: hadoop-hdfs-dn-0
    restart: always
    depends_on:
      - hadoop-hdfs-nn-1
    env_file:
      - .env
    ports:
      - "30864:${HADOOP_HDFS_DN_PORT}"
    command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-hdfs-dn hadoop-hdfs-nn-1 ${HADOOP_HDFS_NN_PORT}"]
    networks:
      - hadoopha_network
    healthcheck:
      test: ["CMD-SHELL", "curl --fail http://localhost:${HADOOP_HDFS_DN_PORT} || exit 1"]
      interval: 10s
      timeout: 5s
      retries: 8
  hadoop-hdfs-dn-1:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop-ha:v1
    user: "hadoop:hadoop"
    container_name: hadoop-hdfs-dn-1
    hostname: hadoop-hdfs-dn-1
    restart: always
    depends_on:
      - hadoop-hdfs-nn-1
    env_file:
      - .env
    ports:
      - "30865:${HADOOP_HDFS_DN_PORT}"
    command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-hdfs-dn hadoop-hdfs-nn-1 ${HADOOP_HDFS_NN_PORT}"]
    networks:
      - hadoopha_network
    healthcheck:
      test: ["CMD-SHELL", "curl --fail http://localhost:${HADOOP_HDFS_DN_PORT} || exit 1"]
      interval: 10s
      timeout: 5s
      retries: 8
  hadoop-hdfs-dn-2:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop-ha:v1
    user: "hadoop:hadoop"
    container_name: hadoop-hdfs-dn-2
    hostname: hadoop-hdfs-dn-2
    restart: always
    depends_on:
      - hadoop-hdfs-nn-1
    env_file:
      - .env
    ports:
      - "30866:${HADOOP_HDFS_DN_PORT}"
    command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-hdfs-dn hadoop-hdfs-nn-1 ${HADOOP_HDFS_NN_PORT}"]
    networks:
      - hadoopha_network
    healthcheck:
      test: ["CMD-SHELL", "curl --fail http://localhost:${HADOOP_HDFS_DN_PORT} || exit 1"]
      interval: 10s
      timeout: 5s
      retries: 8
  hadoop-yarn-rm-0:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop-ha:v1
    user: "hadoop:hadoop"
    container_name: hadoop-yarn-rm-0
    hostname: hadoop-yarn-rm-0
    restart: always
    depends_on:
      - zookeeper
    env_file:
      - .env
    ports:
      - "30888:${HADOOP_YARN_RM_PORT}"
    command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-yarn-rm zookeeper ${ZOOKEEPER_PORT}"]
    networks:
      - hadoopha_network
    healthcheck:
      test: ["CMD-SHELL", "netstat -tnlp|grep :${HADOOP_YARN_RM_PORT} || exit 1"]
      interval: 10s
      timeout: 5s
      retries: 3
  hadoop-yarn-rm-1:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop-ha:v1
    user: "hadoop:hadoop"
    container_name: hadoop-yarn-rm-1
    hostname: hadoop-yarn-rm-1
    restart: always
    depends_on:
      - hadoop-yarn-rm-0
    env_file:
      - .env
    ports:
      - "30889:${HADOOP_YARN_RM_PORT}"
    command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-yarn-rm hadoop-yarn-rm-0 ${HADOOP_YARN_RM_PORT}"]
    networks:
      - hadoopha_network
    healthcheck:
      test: ["CMD-SHELL", "netstat -tnlp|grep :${HADOOP_YARN_RM_PORT} || exit 1"]
      interval: 10s
      timeout: 5s
      retries: 3
  hadoop-yarn-nm-0:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop-ha:v1
    user: "hadoop:hadoop"
    container_name: hadoop-yarn-nm-0
    hostname: hadoop-yarn-nm-0
    restart: always
    depends_on:
      - hadoop-yarn-rm-1
    env_file:
      - .env
    ports:
      - "30042:${HADOOP_YARN_NM_PORT}"
    command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-yarn-nm hadoop-yarn-rm-1 ${HADOOP_YARN_RM_PORT}"]
    networks:
      - hadoopha_network
    healthcheck:
      test: ["CMD-SHELL", "curl --fail http://localhost:${HADOOP_YARN_NM_PORT} || exit 1"]
      interval: 10s
      timeout: 5s
      retries: 3
  hadoop-yarn-nm-1:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop-ha:v1
    user: "hadoop:hadoop"
    container_name: hadoop-yarn-nm-1
    hostname: hadoop-yarn-nm-1
    restart: always
    depends_on:
      - hadoop-yarn-rm-1
    env_file:
      - .env
    ports:
      - "30043:${HADOOP_YARN_NM_PORT}"
    command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-yarn-nm hadoop-yarn-rm-1 ${HADOOP_YARN_RM_PORT}"]
    networks:
      - hadoopha_network
    healthcheck:
      test: ["CMD-SHELL", "curl --fail http://localhost:${HADOOP_YARN_NM_PORT} || exit 1"]
      interval: 10s
      timeout: 5s
      retries: 3
  hadoop-yarn-nm-2:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop-ha:v1
    user: "hadoop:hadoop"
    container_name: hadoop-yarn-nm-2
    hostname: hadoop-yarn-nm-2
    restart: always
    depends_on:
      - hadoop-yarn-rm-1
    env_file:
      - .env
    ports:
      - "30044:${HADOOP_YARN_NM_PORT}"
    command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-yarn-nm hadoop-yarn-rm-1 ${HADOOP_YARN_RM_PORT}"]
    networks:
      - hadoopha_network
    healthcheck:
      test: ["CMD-SHELL", "curl --fail http://localhost:${HADOOP_YARN_NM_PORT} || exit 1"]
      interval: 10s
      timeout: 5s
      retries: 3
  hadoop-yarn-proxyserver:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop-ha:v1
    user: "hadoop:hadoop"
    container_name: hadoop-yarn-proxyserver
    hostname: hadoop-yarn-proxyserver
    restart: always
    depends_on:
      - hadoop-yarn-rm-1
    env_file:
      - .env
    ports:
      - "30911:${HADOOP_YARN_PROXYSERVER_PORT}"
    command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-yarn-proxyserver hadoop-yarn-rm-1 ${HADOOP_YARN_RM_PORT}"]
    networks:
      - hadoopha_network
    healthcheck:
      test: ["CMD-SHELL", "netstat -tnlp|grep :${HADOOP_YARN_PROXYSERVER_PORT} || exit 1"]
      interval: 10s
      timeout: 5s
      retries: 3
  hadoop-mr-historyserver:
    image: registry.cn-hangzhou.aliyuncs.com/bigdata_cloudnative/hadoop-ha:v1
    user: "hadoop:hadoop"
    container_name: hadoop-mr-historyserver
    hostname: hadoop-mr-historyserver
    restart: always
    depends_on:
      - hadoop-yarn-rm-1
    env_file:
      - .env
    ports:
      - "31988:${HADOOP_MR_HISTORYSERVER_PORT}"
    command: ["sh","-c","/opt/apache/bootstrap.sh hadoop-mr-historyserver hadoop-yarn-rm-1 ${HADOOP_YARN_RM_PORT}"]
    networks:
      - hadoopha_network
    healthcheck:
      test: ["CMD-SHELL", "netstat -tnlp|grep :${HADOOP_MR_HISTORYSERVER_PORT} || exit 1"]
      interval: 10s
      timeout: 5s
      retries: 6

networks:
  hadoopha_network:
    driver: bridge

.env

ZOOKEEPER_PORT=2181
HADOOP_HDFS_JN_PORT=8485
HADOOP_HDFS_NN_PORT=9870
HADOOP_HDFS_DN_PORT=9864
HADOOP_YARN_RM_PORT=8088
HADOOP_YARN_NM_PORT=8042
HADOOP_YARN_PROXYSERVER_PORT=9111
HADOOP_MR_HISTORYSERVER_PORT=19888

7)启动服务

# 这里-f docker-compose.yaml可以省略,如果文件名不是docker-compose.yaml就不能省略,-d 后台执行
docker-compose -f docker-compose.yaml up -d

# 查看状态
docker-compose -f docker-compose.yaml ps

通过 docker-compose 快速部署 Hadoop 集群详细教程

8)测试验证

HDFS:http://ip:30070http://ip:30071

namenode主节点:

通过 docker-compose 快速部署 Hadoop 集群详细教程


namenode备节点:

通过 docker-compose 快速部署 Hadoop 集群详细教程


databnode 节点:

通过 docker-compose 快速部署 Hadoop 集群详细教程


通过命令行测试验证:

# 随意登录一个容器即可
docker exec -it hadoop-hdfs-jn-0 bash

hdfs dfs -ls /
hdfs dfs -touchz /test
hdfs dfs -mkdir /test123
hdfs dfs -ls /

通过 docker-compose 快速部署 Hadoop 集群详细教程

YARN:http://ip:30888http://ip:30889

resourcemanager 主节点:

通过 docker-compose 快速部署 Hadoop 集群详细教程


resourcemanager 备节点:

通过 docker-compose 快速部署 Hadoop 集群详细教程


nodemanager 节点:

通过 docker-compose 快速部署 Hadoop 集群详细教程


git 地址:https://gitee.com/hadoop-bigdata/docker-compose-hadoop

通过 docker-compose 快速部署 Hadoop 集群的详细过程就先到这了,有任何疑问欢迎给我留言,可关注我的公众号【大数据与云原生技术分享】回复【dch】获取上面的全套资源哦~

© 版权声明
THE END
喜欢就支持一下吧
点赞0 分享
元草莓的头像 - 宋马社区
评论 共3条

请登录后发表评论